An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures.

نویسندگان

  • Yuchen Pei
  • Raghu V Maligal-Ganesh
  • Chaoxian Xiao
  • Tian-Wei Goh
  • Kyle Brashler
  • Jeffrey A Gustafson
  • Wenyu Huang
چکیده

Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermal stabilities compared with those prepared with organic capping agents. This inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoepitaxial branching: an unusual polymorph of zinc oxide derived from seeded solution growth.

The development of hydrothermal synthesis has greatly promoted bottom-up nanoscience for the rational growth of diverse zinc oxide (ZnO) nanostructures. In comparison with normal ZnO nanowires, ZnO nanostructures with a larger surface area, for instance, branched nanowires, are more attractive in the application fields of catalysis, sensing, dye-sensitized solar cells etc. So far the ZnO branch...

متن کامل

Degradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization

BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...

متن کامل

Degradation and removal of organic pollutants by BaFe2O4 nanostructures, synthesis and characterization

BaFe2O4 nanostructures have been synthesized through a simple sonochemical reduction approach. X-ray diffraction characterization suggested that the product consists of cubic phase pure BaFe2O4. The as-prepared products were also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). An X-ray energy dispersive spectroscopy (EDX) study further confirmed t...

متن کامل

Inorganic Hierarchical Nanostructures Induced by Concentration Difference and Gradient

Address correspondence to [email protected] ABSTRACT A very simple strategy for preparing hierarchical inorganic nanostructures under ambient aqueous conditions is presented. The hierarchical inorganic nanomaterials were obtained by simply adding a highly concentrated solution of one reactant to a solution of another reactant with low concentration. No surface-capping molecules or structure-dire...

متن کامل

Crystalline structure-dependent growth of bimetallic nanostructures.

Morphological control of multimetallic nanostructures is crucial for obtaining shape-dependent physical and chemical properties. Up to date, control of the shapes of multimetallic nanostructures has remained largely empirical. Multimetallic nanostructures have been produced mostly through seed-mediated growth. Understanding the role played by starting nanocrystal seeds can help in controlling t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 40  شماره 

صفحات  -

تاریخ انتشار 2015